
Integrating Hardware and
Software Development in

Digital Product
Delivery

alex.janicki
Sticky Note
Possible Keywords:

Focus: hardware and software integration - (40V/14KD)

Secondary: software and hardware integration (inverse) - (10v/10KD)

INTEGRATING HARDWARE AND SOFTWARE DEVELOPMENT IN DIGITAL PRODUCT DELIVERY

Introduction

Every day, software becomes more crucial to the way our world works – and the more we incorporate it into our daily
lives and the things we use, the more complex it becomes.

To put that into perspective, the Apollo 11 moonshot required approximately 145,000 lines of code back in 1969. Today, it can take up to 100
million lines of code to get a modern car out of the driveway.

The more software that products contain, the more complex it becomes to develop them – and the more room there is for error. Meanwhile, the
pressure to innovate and bring complex quality products to market faster is on more than ever. Add to that the challenge of efficiently managing
the parallel development streams of hardware, software, and service innovation, ensuring transparency, and integrating all of these in a single
product.

Manufacturers who don’t want to get left behind in the race to optimize complex product development need to significantly evolve their
processes, systems, and team mindsets, or be replaced by competitors who have designed their businesses with complex products in mind from
the ground up.

The key to this evolution:

Opening up the
organization to

interdisciplinary
thinking

Using methods from
systems

engineering

Establishing a
methodical
view of the

overall system

Leveraging the
right PLM/ALM

tools

INTEGRATING HARDWARE AND SOFTWARE DEVELOPMENT IN DIGITAL PRODUCT DELIVERY

Software opening up new perspectives for the
manufacturing business

Over 100 years after Henry Ford
disrupted the automotive sector by
introducing moving assembly lines,
the manufacturing industry is facing
radical disruption again.

But this time, rather than a single innovation,
this change is due to a combination of evolving
business models, technological innovation, and
supply chain changes.

The driver and enabler of this development
is software. The functionality of a product
is no longer down to its electromechanical
qualities alone, but rather, it comes from
an increasingly closer symbiosis between
software and hardware, whether it’s in cars,
medical technology, in mechanical and plant
engineering – or even in bicycles.

From a business perspective, these
developments represent both an opportunity
and a challenge. An opportunity because, given
increased competition as well as pressure to
innovate, software-driven products make it
possible to speed up development times as well
as pave the way for completely new business
models.

Take e-bikes, for example. Sensors already
control pedal assist and the display is already
connected to your mobile phone via Bluetooth.
As a result, it’s just a short step from the status
quo to imagining a cloud-based performance
measurement system that tracks your training
efforts and offers personalized training advice.
Or even a handy power boost if a hill gets a little
too steep – for a small charge you can pay for by
mobile, of course.

So what makes it a challenge?

INTEGRATING HARDWARE AND SOFTWARE DEVELOPMENT IN DIGITAL PRODUCT DELIVERY

Interdisciplinary teams

Well, from the product developer’s perspective, this type of change is anything
but straightforward. Even if variance decreases on the mechanical side, the
complexity of the overall system increases because of all that software, and the tight
interrelation between these components. And on top of that, there are often different
development teams behind the software itself (or at least interdisciplinary groups of
people with different ways of thinking) that all manage innovation cycles in their own
way and at their own speed. Orchestrating their work and integrating these parallel
development streams is a challenge.

System validation

Manufacturers must also consider how the overall system can be validated,
especially in the context of safety-critical products. Depending on the industry and
product in question, standards require every development step and change to be
traceable back to the original requirements.

That being said, although the overall product complexity will increase in the future,
a large part of that complexity will shift from the electromechanical side to software.
Although it doesn’t exactly make things easier, removing the constraints imposed
by the physical world makes it possible to apply other methods of mastering
complexity, with a disproportionately higher level of efficiency and scalability.

This means that those who go the extra mile to master this discipline will be able to
boost their performance to a far greater degree than the effort required to master
complexity.

Of course, this is easier said than done, so let’s explore the kind of tooling that will
support these change management efforts!

INTEGRATING HARDWARE AND SOFTWARE DEVELOPMENT IN DIGITAL PRODUCT DELIVERY

Tooling questions of managing
software-driven product lifecycles

The functional symbiosis between mechanical engineering, electronics, and
increasingly complex software is made possible by ever-growing computing
power.

However, this also has a downside. Whenever a
large number of elements interact, there is also,
statistically speaking, an increased probability
that errors will occur.

By way of comparison: a Linux kernel from 1994
required just under 200,000 lines of code. By
2018, that figure had risen to over 25 million. To
make matters worse, a lack of structure reduces
the efficiency of troubleshooting. Over time,
the toolkits used for software development
evolved into what we know today as Application
Lifecycle Management (ALM), and its process
model has been incorporated into modern
Systems Engineering.

In many companies, the focus was and still is
on managing the many individual components.
Ensuring consistency from the requirements
specification through to the finished product is
not usually supported by a Product Lifecycle
Management (PLM) concept (method &
tooling) that has been established consistently
throughout the company.

In a world dominated by
electromechanical elements,
the main challenges are as
follows:

• The need to support the design
process

• Managing the technical data for
various components

• The ability to work together
effectively as a team.

INTEGRATING HARDWARE AND SOFTWARE DEVELOPMENT IN DIGITAL PRODUCT DELIVERY

Common approaches to developing
software-driven products

We can observe the following tendencies when it comes to integrating growing amounts of software in companies
that grew up focusing mainly on mechanical and electromechanical products:

A
Treating software as a hardware appendage

This is when the software is seen as an extension of or addition to
hardware (something along the lines of “that little bit of software is just
another part number”).

Software components are equated with electromechanical components
and are assigned a part number.

While you may still be able to identify at least the ECU in a product
structure, it will ultimately be impossible to identify all the mutual
dependencies in a flat BOM.

B
ALM and PLM living side by side

In some cases, an independent parallel ALM world is set up alongside
the PLM world. This presents a situation best described as “I don’t know
what they’re doing over there, but I’m not interested either”.

Freed from the constraints of electromechanical development, the
software developers can fully embrace their dynamic capabilities
in the ALM world. Software is optimized to meet current customer
requirements in short iterations and in a very agile manner.

However, what is usually overlooked in a scenario of complete
separation is mutual synchronization between the worlds of PLM and
ALM. Unfortunately, this becomes an inconsistency that is carried over
into production and the finished product.

INTEGRATING HARDWARE AND SOFTWARE DEVELOPMENT IN DIGITAL PRODUCT DELIVERY

The advantages and disadvantages to both approaches

Neither scenario outlined above is ideal.

Treating software as an “add-on” to hardware can work if the level
of functional integration is not particularly high, or alternatively if the
product doesn’t experience high rates of change. In other words, if the
software is there to solve specific, clearly outlined, and localized tasks,
then its impact on the overall system is not significant. In addition, there
should be no great expectations in terms of the agility of software
development.

The second approach can work from the software perspective, but not
in terms of creating a holistic view of the product and its value creation
processes. Ensuring efficient collaboration and validation across various
tools and departments, in this case, continues to be a problem.

Depending on the complexity of the product variance and the relative
size of the company, both strategies can work for a little while. Motivated
employees often compensate for methodological and procedural
shortcomings, and companies quickly develop a remarkable level of
tolerance of systemic issues.

This can escalate into an increased willingness to take risks which
results in inadequately validated products being brought to market.
Customers will also accept a certain level of imperfection in the product
(at least for a while) until they can no longer see a reason not to go with a
competitor instead.

INTEGRATING HARDWARE AND SOFTWARE DEVELOPMENT IN DIGITAL PRODUCT DELIVERY

Rethinking PLM and ALM:
getting to grips with increasing complexity

The “fine art” of optimizing software-driven product development lies in establishing processes, methods, and tools
that give all involved parties transparency, an efficient hub to collaborate, and all the tools they need to flourish.

That being said, all the separate domains still have to be coordinated to ensure that the end product meets all the requirements and functions as
a single unit. However, this is not just a question of tooling and methodology. It also requires a wide-spreading and deep organizational change,
the willingness for which is crucial. It is recommended to assign someone to take an active role in overseeing the changes and provide strong
guidelines for coordination in your organization.

INTEGRATING HARDWARE AND SOFTWARE DEVELOPMENT IN DIGITAL PRODUCT DELIVERY

The methodological foundation

Once there is an organizational willingness to accept
new ways of thinking and working, the next step is
to establish a joint procedural model for developing
solutions.

Impromptu planning and coordination (with sporadic and
haphazard interactions between different disciplines) just won’t
cut it. The collaborative development process needs to be
actively controlled in the complex environment of technology
development.

Methods used in systems engineering provide a suitable
foundation. These already include extremely useful toolkits that
can be used to tweak all the components of a product or system
to the shared requirements.

Whether this involves implementing one of the systems
engineering standards exactly as specified or merely using it as
a guideline is almost a matter of preference – unless, of course,
you have to provide proof of compliance with specified standards
to your customers or other stakeholders (as required in some
industries), in which case, it becomes highly important.

INTEGRATING HARDWARE AND SOFTWARE DEVELOPMENT IN DIGITAL PRODUCT DELIVERY

Using an appropriate procedural model

What is crucial is that your company chooses an appropriate
procedural model (such as the V-model, for example) and uses it
much as you would a compass.

What does this mean in the context of a software-driven product?
It is vital that at the very beginning, you think about what the
product should be able to do and what other requirements (e.g.
standards) it has to meet. This should be done as impartially as
possible and without a specific approach in mind. Let’s explore the
specific steps which follow.

Describing what your product should be able to do

Once the requirements pertaining to your product are clear, the
next step is to determine the functionality that each individual sub-
discipline (mechanics, electronics, software) will contribute. You
are still in the phase in which all participants need to work together
closely. Do not, however, succumb to the temptation of wanting
to specify everything down to the last detail. Take an e-bike as an
example: In order to satisfy a requirement regarding an “electronic
bike lock” function, all you need to specify at this stage is that
there has to be some kind of mechanical locking mechanism that
can be operated via software using the display on the bike. How
this is actually implemented is, however, not yet relevant.

Designing your systems in a way that makes sense

There are two important aspects to the architecture phase: first,
to divide the system up sensibly, and second, to provide an initial
abstract definition of the interdependencies between the system
elements. In this context, “sensible” means that the dependencies
between the subsystems should be kept to a minimum because
all coordination between the individual development teams
in your company will from this point on revolve around these
dependencies. As the project progresses, it is important to
describe the interfaces in ever greater detail until the product is
completely defined (or defined as an MVP).

Beyond initial development, the way in which the system is divided
up and the description of the dependencies are also important
for ongoing product maintenance. This approach allows the
individual disciplines to flourish and drive innovations agilely
at their own pace, provided that none of the limits imposed by
the dependencies of the subsystems are exceeded. As far as
a software-driven product is concerned, this means that the
possibilities on the software side are boundless, provided that the
hardware and mechanics do not impose any constraints.

INTEGRATING HARDWARE AND SOFTWARE DEVELOPMENT IN DIGITAL PRODUCT DELIVERY

Creating a synchronization mechanism

If more comprehensive, further developments
are involved, multiple subsystems and
disciplines almost always have to be taken
into account because software alone can
no longer be used to implement every new
requirement. In other words, changes will also
have to be made to the hardware. That is why
your activities should include a development
roadmap that indicates which major functional
innovations and which extensions to the
interfaces of the subsystems are planned.

The overall system sets the pace and all
the subsystems involved have to follow. For
example, an e-bike manufacturer could bring
an updated model to market every year.
The development teams have to implement
the main features planned for these annual
updates in good time, which of course means
that the interfaces between the subsystems
also need to be defined in the context of
the architecture. The electronic bicycle lock
function, for example, could look like this.

Otherwise, the two subsystems would
develop independently of each other at
different paces. This means, for example,
that a basic variant and a revamp of the
mechanics/electronics could be planned for
each model year, while new software versions
can be released monthly in an agile manner,
or at even shorter intervals.

INTEGRATING HARDWARE AND SOFTWARE DEVELOPMENT IN DIGITAL PRODUCT DELIVERY

Closing thoughts & Summary

Dividing the system into the subsystems mechanics/electronics and software is of
course only an example.

More complex products may involve many other subsystems and possibly even several parallel subsystems
of the same type (e.g. several software subsystems).

It is important to keep in mind that despite every effort to keep things simple, the interdependencies
between these subsystems can quickly become very diverse and complex. It is therefore essential that your
IT landscape helps you keep track of all these interdependencies as best possible.

Establishing this type of method model lays a foundation that will enable you to meet the challenge of
developing software-driven products reliably throughout the development process.

In the future, many products will be driven by software to a far greater degree than today.

Although this means that product complexity will inevitably increase, methods exist that allow this
complexity to be managed reliably. End-to-end systems engineering, in particular, provides crucial support.

But this presumes that companies establish a culture of change, are open to interdisciplinary thinking, and
are prepared to throw out old habits. Hardly anyone need be afraid of the unknown as most companies today
are already putting much of these concepts into practice in one way or another. There is often simply a lack of
optimized and more target-oriented coordination, which can be solved with the right mindset shift, by putting
someone specific in charge, and by using adequate tooling to support your effort.

INTEGRATING HARDWARE AND SOFTWARE DEVELOPMENT IN DIGITAL PRODUCT DELIVERY

Codebeamer offers industry-leading software
tools to simplify complex product and software
engineering at scale.

Our enterprise-grade platforms help accelerate the
development of technology products and simplify regulatory
compliance. PTC’s solutions are used by leading companies
including top automotive, medical, pharma, and life sciences
developers worldwide to manage their innovative, compliant
product engineering processes.

The BHC GmbH, as part of PROSTEP AG is specialized in IT-
related consulting for product- and application lifecycle
management in the automotive industry, mechanical
engineering and plant engineering. The focus of our
competence lies in the consulting of consistent process,
method and IT-system development for companies in the fields
of mechatronics and software development. To learn more,
follow BHC GmbH on Linkedin.

Learn more

https://www.b-h-c.de/
https://www.linkedin.com/company/b-h-c-gmbh/
https://www.ptc.com/en/products/codebeamer
https://www.b-h-c.de/

121 Seaport Blvd, Boston, MA 02210 : ptc.com

© 2023, PTC Inc. All rights reserved. Information described herein is furnished for informational use only, is subject to change without notice, and should not

be taken as a guarantee, commitment, condition or offer by PTC. PTC, the PTC logo, and all other PTC product names and logos are trademarks or registered

trademarks of PTC and/or its subsidiaries in the United States and other countries. All other product or company names are property of their respective owners.

020-integrating-hardware-software-development-digital-product-delivery-02-13

	Cover
	Introduction
	Software opening up new perspectives for the manufacturing business
	Tooling questions of managing
software-driven product lifecycles
	Common approaches to developing
software-driven products
	Rethinking PLM and ALM:
getting to grips with increasing complexity
	The methodological foundation
	Closing thoughts & Summary
	About BHC and Codebeamer
	Back cover

